Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 13(7)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1314760

ABSTRACT

More than a year after the first identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of the 2019 coronavirus disease (COVID-19) in China, the emergence and spread of genomic variants of this virus through travel raise concerns regarding the introduction of lineages in previously unaffected regions, requiring adequate containment strategies. Concomitantly, such introductions fuel worries about a possible increase in transmissibility and disease severity, as well as a possible decrease in vaccine efficacy. Military personnel are frequently deployed on missions around the world. As part of a COVID-19 risk mitigation strategy, Belgian Armed Forces that engaged in missions and operations abroad were screened (7683 RT-qPCR tests), pre- and post-mission, for the presence of SARS-CoV-2, including the identification of viral lineages. Nine distinct viral genotypes were identified in soldiers returning from operations in Niger, the Democratic Republic of the Congo, Afghanistan, and Mali. The SARS-CoV-2 variants belonged to major clades 19B, 20A, and 20B (Nextstrain nomenclature), and included "variant of interest" B.1.525, "variant under monitoring" A.27, as well as lineages B.1.214, B.1, B.1.1.254, and A (pangolin nomenclature), some of which are internationally monitored due to the specific mutations they harbor. Through contact tracing and phylogenetic analysis, we show that isolation and testing policies implemented by the Belgian military command appear to have been successful in containing the influx and transmission of these distinct SARS-CoV-2 variants into military and civilian populations.


Subject(s)
COVID-19/virology , Military Personnel , SARS-CoV-2/classification , SARS-CoV-2/genetics , Afghanistan/epidemiology , Belgium , COVID-19/epidemiology , China/epidemiology , Democratic Republic of the Congo/epidemiology , Genome, Viral , Genomics , Humans , Mali/epidemiology , Molecular Epidemiology , Mutation , Niger/epidemiology , Phylogeny , Travel , Whole Genome Sequencing
2.
Viruses ; 12(9)2020 08 27.
Article in English | MEDLINE | ID: covidwho-738716

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compromises the ability of military forces to fulfill missions. At the beginning of May 2020, 22 out of 70 Belgian soldiers deployed to a military education and training center in Maradi, Niger, developed mild COVID-19 compatible symptoms. Immediately upon their return to Belgium, and two weeks later, all seventy soldiers were tested for SARS-CoV-2 RNA (RT-qPCR) and antibodies (two immunoassays). Nine soldiers had at least one positive COVID-19 diagnostic test result. Five of them exhibited COVID-19 symptoms (mainly anosmia, ageusia, and fever), while four were asymptomatic. In four soldiers, SARS-CoV-2 viral load was detected and the genomes were sequenced. Conventional and genomic epidemiological data suggest that these genomes have an African most recent common ancestor and that the Belgian military service men were infected through contact with locals. The medical military command implemented testing of all Belgian soldiers for SARS-CoV-2 viral load and antibodies, two to three days before their departure on a mission abroad or on the high seas, and for specific missions immediately upon their return in Belgium. Some military operational settings (e.g., training camps in austere environments and ships) were also equipped with mobile infectious disease (COVID-19) testing capacity.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Military Personnel/statistics & numerical data , Pneumonia, Viral/epidemiology , Adult , Belgium/epidemiology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Disease Outbreaks , Humans , Male , Molecular Epidemiology , Niger/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Serologic Tests , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL